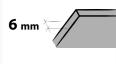

XYLOFON

Hocheffizientes Schalldämmband zur Schwingungsdämpfung

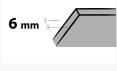
Spezieller Polyurethan - Werkstoff mit hoher Belastbarkeit

ZERTIFIKAT

Geprüft gemäß EN ISO 10848 durch das Zentrum für industrielle Forschung der Universität von Bologna


PERFORMANCE

Reduzierung der Luft- und Körperschallemission um bis über 15 dB dank der elastischen und widerstandsfähigen Mischung


6 MM

Die geringe Profilstärke erlaubt einen hohen Belastungsbereich (über 400 kN/m), ohne groß die Planungsentscheidungen zu beeinflussen

ZUVERLÄSSIG

Die monolithische Struktur (Homogenität) des Polyurethan garantiert die absolute Wasserdichtheit und Dauerhaftigkeit des Profiles bei extrem langer Lebensdauer



ANWENDUNGSBEREICHE

Mechanische Entkopplung von Holz-Holz-, Holz-Beton- und Holz-Stahl-Verbindungen

- CLT (Brettsperrholzplatten)
- Rahmenkonstruktion (platform frame)
- Rahmen aus LVL (Furnierschichtholz)
- **Blockhaus**

SCHALLDÄMMUNG

Geprüfte und zertifizierte Anwendung als Entkopplungsebene zwischen Baumaterialien. Reduziert beträchtlich die Luftschallemission und den Körperschall

PLANUNG

Vielseitig verwendbar, z.B. um Knotenpunkte zwischen Baumaterialien akustisch zu entkoppeln (Aufzugschächte, Mischbauweise). Die geringe Profilstärke von nur 6 mm ist in der Planung leicht zu berücksichtigen

ANWENDUNG

Das Produkt wird in praktischen Kleinrollen geliefert und kann mittels einfachen Handwerkzeugen (Cutter, Klammernagler) zugeschnitten und montiert werden. Eine zusätzliche Verklebung mit Klebebänder um die Luftdichtheit zu gewährleisten, wird empfohlen

ART.-NR. UND ABMESSUNGEN

XYLOFON

ARTNR.	Version	Länge	Breite (L)	Stärke (S)	Stk./Konf.
D82411	35	3,66 m	100 mm	6 mm	1
D82412	<u> </u>	3,66 m	100 mm	6 mm	1
D82413	7 0	3,66 m	100 mm	6 mm	1
D82414	80	3,66 m	100 mm	6 mm	1
D82415	9 0	3,66 m	120 mm	6 mm	1

MATERIAL UND HALTBARKEIT

Polyurethanmischung von 35 bis 90 Shore. Produkt frei von VOC oder Schadstoffen. Chemisch äußerst stabil und ohne Verformungen.

TECHNISCHE DATEN

EIGENSCHAFTEN	NORM	MAßEINHEIT	D82411	D82412	D82413	D82414	D82415
Härte	-	Shore	35	50	7 0	80	90
Ständige statische Belastung (10 %)	-	N/mm²	0,176	0,304	0,940	1,710	3,600
Dynamische Steifigkeit s' ***	UNI 29052	MN/m³	1262	1455	1822	2157	>2200
Creep *	EN 1606	%	<0,5	<0,5	<0,5	<0,5	<0,5
Druckverformungsrest DVR **	ISO 1856	%	1,5	0,5	0,3	0,9	3,7
Dynamischer Elastizitätsmodul E', 10 Hz (DMA)	ISO 4664	MPa	2,16	3,53	10,1	19	43
Dynamischer Schubmodul G', 10 Hz (DMA)	ISO 4664	MPa	1,13	1,18	3,24	6,5	16,7
Dämpfungsfaktor Tan δ	ISO 4664	-	0,177	0,132	0,101	0,134	0,230
Max. Verwendungstemperatur (TGA)	=	°C	200	> 200	> 200	> 200	> 200
Brandverhalten	EN 13501-1	Klasse	Е	Е	Е	Е	Е

Die vollständigen Berichte zur mechanisch-akustischen Charakterisierung des Materials sind bei der technischen Abteilung von Rothoblaas erhältlich

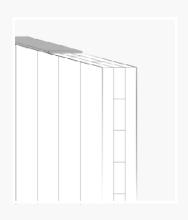
ANWENDUNGSTABELLE

			ANWENDBARE LINEARE BELASTUNG [KN/m]		ANWENDBARER DRUCK [N/mm²]		STAUCHUNG [mm]	
ARTNR.	STREIFENBREITE [mm]	VERSION	von	bis	von	bis	min	max
D82411	100	35	1,8	17,6	0,018	0,176	0,06	0,60
D82412	100	50	3,0	30,4	0,030	0,304	0,06	0,60
D82413	100	7 0	9,2	92,0	0,092	0,920	0,06	0,60
D82414	100	80	17,1	171,0	0,171	1,710	0,06	0,60
D82415	120	90	43,2	432,0	0,360	3,600	0,06	0,60

Für weitere Informationen bzgl. Verwendung und Berechnung, siehe Seite 31

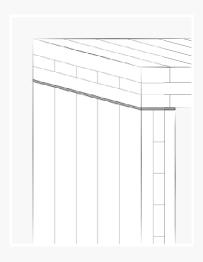
^{*} aus 30 Beobachtungstagen gewonnene Daten

^{**} auf Materialien mit 30 mm Nennstärke durchgeführte Messungen


^{***} s' = s' (t) der Beitrag der Luft wird nicht berechnet, weil das Produkt absolut luftdicht ist (sehr hohe Strömungswiderstandswerte)

ANWENDUNGSBEREICH

Schalldämmende Entkoppelungslage für Knotenpunkte zwischen den Bauelementen


VERLEGUNGSHINWEISE

1) Das Profil auf dem oberen Abschnitt der Wand auslegen

2) Alle 40 / 60 cm mechanisch mit Klammern befestigen

3) Die horizontale Deckenplatte verlegen und darauf wieder das Profil auslegen

ZUSÄTZLICHE PRODUKTE

CUTTER FÜR PROFI-SCHNITTE

ARTNR.	Stk./Konf.
CUTTER	1

MARLIN

ARTNR.	Stk./Konf.			
MARLIN	1			

3482 KLAMMERNAGLER FÜR K KLAMMERN

ARTNR.	Stk./Konf.			
HH3482	1			

3417 KLAMMERNAGLER

FÜR K KLAMMERN

ARTNR.	Stk./Konf.
HH3417	1

3481 KLAMMERNAGLER

MIT TIEFENEINSTELLUNG UND HANDKOFFER

ARTNR.	Stk./Konf.			
HH3481	1			

KLAMMERNAGLER

MANUELL

ARTNR.	Version	Stk./Konf.
HH735347	6 - 10	1

KLAMMERNAGLER

MANUELL

ARTNR.	Version	Stk./Konf.
HH735322	8 - 14	1

KLAMMERNAGLER

MANUELL

ARTNR.	Stk./Konf.
RTHH14B	1

Für eine vollständige Übersicht der erhältlichen Ausrüstung siehe den Katalog "Werkzeuge für den Holzbau"

AUSWERTUNG ZUR VERSUCHSREIHE

an der Flankenübertragung mit verschiedenen Befestigungselementen und CLT Platten.

Wie bereits in der Einleitung des Katalogs erwähnt, hat Holz die Eigenschaft, bei niedrigen Frequenzen, Töne und Schwingungen in angrenzende Bauteile zu übertragen. Diese Übertragung wird außerdem immer von der Anzahl und der Art der für die Statik des Gebäudes verwendeten Befestigungsmittel beeinflusst.

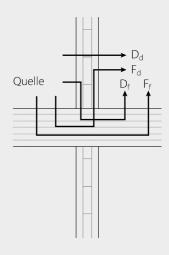
Angesichts dessen hat Rothoblaas zusammen mit der **Universität von Bologna** beschlossen, die Erforschung dieser Problematik in Angriff zu nehmen. Hierbei werden die Schalleigenschaften von monolithischen Holzstrukturen (z.B. CLT-Platten) bezüglich der Flankenübertragung bei verschiedenen Verbindungssystemen untersucht.

Verbindungssystem mit Winkelverbinder TITAN SILENT in Kombination mit Schalldämmband ALADIN STRIPE

Ziel der Forschung ist die Ermittlung des Index der Schwingungsreduzierung **K**_{ij} und der genormte Differentialpegel der Schwingungen **D**_{v,ij,n} der verschiedenen Verbindungsstellen bei den verschiedenen Verbindungskonfigurationen. Die Werte werden gemäß der **Norm ISO 10848** durch Messen der Differenz der zwischen den CLT-Platten übertragenen Energiemengen bewertet, die sich aus einer Reihe von mechanischen Belastungen ergeben.

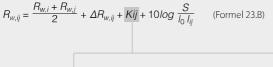
Verschiedene Konfigurationen wurden berücksichtigt: Der Einfluss der verschiedenen Abmessungen der Verankerungsplatten und der Strukturschrauben sowie der Abstand der Verbindungssysteme, einschließlich der Nagelungsund Verschraubungssmodalitäten, wurden bewertet und erforscht.

Prüfkonfiguration der Schallübertragung an einer vertikalen X-Verbindung

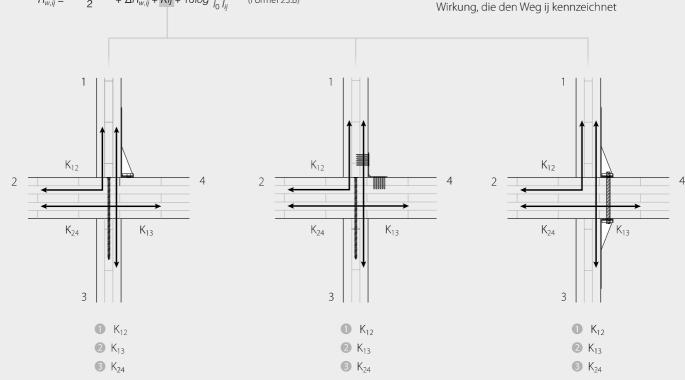

Ein Rechenbuch für Standard-Verbindungen ist ein leistungsfähiges Instrument zur Unterstützung der Konstrukteure bei der Planung der gewünschten Schalldämmung. Die Verfügbarkeit dieser Daten ermöglicht die vollständige Charakterisierung der Strukturverbindungspunkte nach der von der Norm EN 12354-1 vorgeschlagenen Methode und bietet ein leistungsfähiges Instrument zur Bemessung der einzusetzenden Schalldämmung. Das Ziel ist es, ein Berechnungsmodells zu entwickeln und Daten für das akustische Verhalten der CTL-Strukturen mit den jeweiligen Anbindungen zu liefern.

Verwendungsbeispiel europäische Norm UNI EN 12354-1: Bauakustik.

Berechnung der akustischen Eigenschaften von Gebäuden aus den Bauteileigenschaften - Luftschalldämmung zwischen Räumen.


R', die scheinbare schalldämmende Wirkung der betroffenen Strukturen kann aus dem folgenden Verhältnis abgeleitet werden:

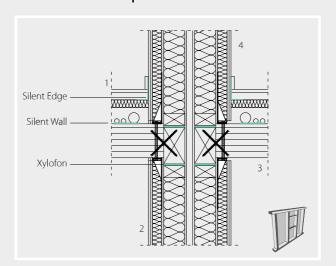
$$R_{W}^{l} = -10 log \left(10^{\frac{-R_{WDd}}{10}} + \sum_{F=f=1}^{n} 10^{\frac{-R_{WFd}}{10}} + \sum_{f=1}^{n} 10^{\frac{-R_{WDf}}{10}} + \sum_{F=1}^{n} 10^{\frac{-R_{WFd}}{10}} \right)$$
 (Formel 23.A)



 R_{Dd} , R_{Ff} , R_{Df} , und R_{Ed} sind die Werte, die zur Berechnung der schalldämmenden Wirkung für Übertragung direkt (Dd) und über die Flanken (Ff, Df und Fd) maßgebend sind.

Um dies berechnen zu können, muss R für die einzelnen Geräuschübertragungswege in den betroffenen Strukturen durch das folgende Verhältnis bestimmt werden:

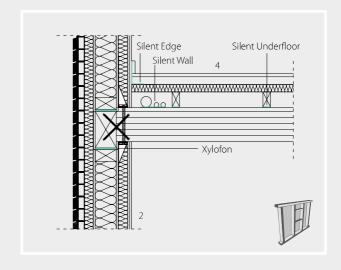
R_{w,ij} ist der Bewertungsindex der schalldämmende

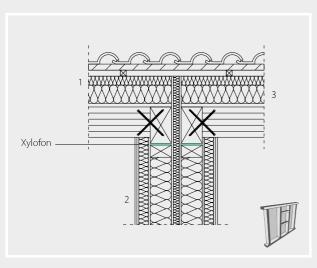

Bewertung der Flankenübertragung für Holzstrukturen Verfasser: Rothoblaas und Universität von Bologna

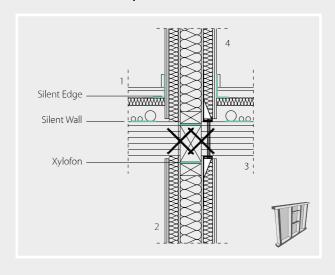
BEISPIELE FÜR DEN INDEX DER SCHWINGUNGSREDUZIERUNG KIJ GEMÄß EN 12354

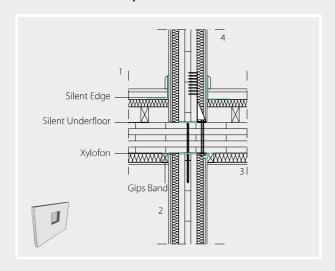
Im Folgenden führen wir einige Detaillösungen mit dem hoch schalldämmenden Profil XYLOFON auf. In der Endtabelle werden die bei der Verwendung von XYLOFON erhaltenen Indizes der Schwingungsreduzierung \mathbf{K}_{ij} aufgezeigt. Alle Werte beziehen sich auf die Struktur ohne zusätzliche Verkleidungen oder Schichten.

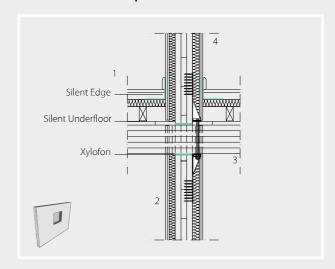
Um den Beitrag **AR** (siehe Formel 23.B auf Seite 21) der erwähnten Verkleidungen zu berücksichtigen, müssen die von den Herstellern gelieferten experimentellen Prüfberichte oder die in der europäischen Norm EN 12354 - Annex D enthaltenen Angaben verwendet werden.

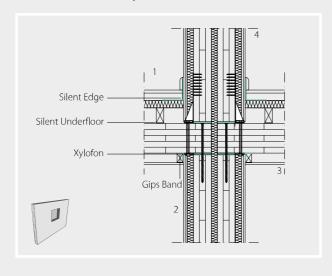

DETAILZEICHNUNG 1 | T-L_3/9/10_B

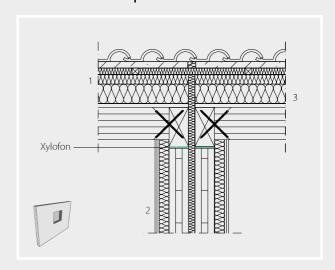

DETAILZEICHNUNG 2 T_2/3/9/10_P1


DETAILZEICHNUNG 3 T-L_2/3/9_A

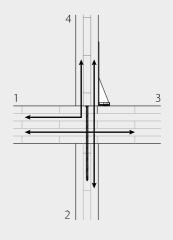

DETAILZEICHNUNG 4 T-L_5/6_S


DETAILZEICHNUNG 5 T-L_3/9/10_A


DETAILZEICHNUNG 6 X-X_3/9/10_B


DETAILZEICHNUNG 7 | X-L_3/9/10_A

DETAILZEICHNUNG 8 X-X_3/9/10_B


DETAILZEICHNUNG 9 | X-T_5/6_S

INDEXDERSCHWINGUNGSREDUZIERUNG

	OHNE X	YLOFON	MIT XYLOFON (SH35)			
	K_{2,4} (dB)	K_{1,2} (dB)	K_{2,4} (dB)	K_{1,2} (dB)	K_{1,3} (dB)	$\mathbf{D_{v1,3n}}$ (dB)
DETAILZEICHNUNG 1	12,2	6,6	22,2	11,6	-	35,7
DETAILZEICHNUNG 2	9,5	6,0	19,5	11,0	-	35,7
DETAILZEICHNUNG 3	12,2	6,6	22,2	11,6	-	-
DETAILZEICHNUNG 4	-	6,6	-	11,6	-	35,7
DETAILZEICHNUNG 5	16,4	9,6	26,4	14,6	-1,0	-
DETAILZEICHNUNG 6	12,8	9,0	22,8	14,0	0,0	-
DETAILZEICHNUNG 7	12,8	6,6	22,8	14,0	0,0	=
DETAILZEICHNUNG 8	9,1	6,0	19,1	11,0	-	35,7
DETAILZEICHNUNG 9	-	6,0	-	11,0	-	35,7

ANMERKUNGEN: Siehe die vollständige Bibliothek der Detailzeichungen der Bauelemente auf www.rothoblaas.com Die vollständige Bibliothek der K_{ij}, die mit den Rothoblaas-Verbindungssystemen realisiert wurde, ist über die technische Abteilung erhältlich

 K_{ij} für Werte von 125 Hz bis 2000 Hz K_{ij} Näherungswert ± 2 dB $70 \le m'1 = m'3 \le 100 \text{ kg/m}^2$ $40 \le m'2 = m'4 \le 60 \text{ kg/m}^2$